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History

• 1940s–1960s: 
• development of theories of biological learning
• implementations of the first models

• perceptron (Rosenblatt, 1958) for training of a single neuron.

• 1980s-1990s: back-propagation algorithm to train a neural network 
with more than one hidden layer

• too computationally costly to allow much experimentation with the 
hardware available at the time.

• 2006 “Deep learning” name was selected
• ability to train deeper neural networks than had been possible before

• Although began by using unsupervised representation learning, later success 
obtained usually using large datasets of labeled samples 
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Deep Learning

• Learning a computational models consists of multiple 
processing layers  

• learn representations of data with multiple levels of abstraction.

• Dramatically improved the state-of-the-art in many speech, 
vision and NLP tasks (and also in many other domains) 
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MLP with single hidden layer

•  
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Machine Learning Methods

• Conventional machine learning methods:
•  try to learn the mapping from the input features to the 

output by samples 
• However, they need appropriately designed 

hand-designed features
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Hand-designed 
feature extraction Classifier OutputInput

Learned using 
training samples
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Example

•  
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[Abu Mostafa, 2012]
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Representation of Data

• Performance of traditional learning methods depends heavily 
on the representation of the data. 

• Most efforts were on designing proper features

• However, designing hand-crafted features for inputs like 
image, videos, time series, and sequences is not trivial at all.

• It is difficult to know which features should be extracted.
• Sometimes, it needs long time for a community of experts to find (an 

incomplete and over-specified) set of these features.
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Representation Learning

• Using learning to discover both:
• the representation of data from input features
•  and the mapping from representation to output

8

Trainable feature 
extractor Trainable classifier OutputInput

End-to-end 
learning
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Deep networks

• Deeper networks (with multiple hidden layers) can work 
better than a single-hidden-layer networks is an empirical 
observation

• despite the fact that their representational power is equal.

• In practice usually 3-layer neural networks will outperform 
2-layer nets, but going even deeper may not help much 
more. 

• This is in stark contrast to Convolutional Networks

9 Neural NetworksDeep Learning
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Deep Learning Approach

• Deep breaks the desired complicated mapping into a series of 
nested simple mappings

• each mapping described by a layer of the model.
• each layer extracts features from output of previous layer 

• shows impressive performance on many Artificial Intelligence 
tasks
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Trainable feature 
extractor
(layer n)

Trainable classifier OutputInput
Trainable feature 

extractor
(layer 1)

…

Trainable feature 
extractor
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Deep Representations:
The Power of Compositionality

• Compositionality is useful to describe the world efficiently
• Learned function seen as a composition of simpler operations
• Hierarchy of features, concepts, leading to more abstract factors 

enabling better generalization
• each concept defined in relation to simpler concepts
• more abstract representations computed in terms of less abstract ones.

• Again, theory shows this can be exponentially advantageous

• Deep learning has great power and flexibility by learning to 
represent the world as a nested hierarchy of concepts
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This slide has been adopted from  Yoshua Bengio’s slides
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Deep learning

• Use networks with many layers

• A single hidden layer with enough units can approximate any 
target network

• More layers more closely mimics human learning
• We may need far less number of nodes when we use deep 

networks  

• A hierarchy of internal representations for the input.
• The first layer constructs a low-level representation; 
• More complex representations in terms of simpler representation 

of the previous layer

13 Neural NetworksDeep Learning
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Boolean functions

• Input: N Boolean variable
• How many neurons in a one hidden layer MLP is required? 
• More compact representation of a Boolean function 

• “Karnaugh Map” 
• representing the truth table as a grid 
• Grouping adjacent boxes to reduce the complexity of the Disjunctive 

Normal Form (DNF) formula

14

1 1 1 1

1 1
1 1

 
     

 
 
 
 

Neural NetworksDeep Learning



Sharif University
of Technologytitle1515
Sharif University
of Technologytitle1515

Worst case

•  
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Using deep network: Parity function on N inputs

•  
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A better architecture

•  
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Boolean function: Wide vs. deep network

• MLP with a single hidden layer is a universal Boolean 
function

• However, a single-layer network might need an exponential 
number of hidden units w.r.t. the number of inputs

• Deeper networks may require far fewer neurons than the 
single hidden layer network

• Linear w.r.t. the number of inputs when that is deep enough

18 Neural NetworksDeep Learning
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Why does deep learning become popular?

• Large datasets

• Availability of the computational resources to run 
much larger models

• New techniques to address the training issues

19 Neural NetworksDeep Learning
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Training issues

• The backpropagation algorithm is an efficient way of 
computing the derivative of the cost function w.r.t. 
each of the weights

• However, many issues must be considered to have 
successful training:

• Optimization issues
• Generalization issues

20 Neural NetworksDeep Learning
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Optimization issues

• Problems with gradient descent
• saddle points
• Platueaux  
• poor conditioning
• …

21 Neural NetworksDeep Learning
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Saddle point

• Popular hypothesis:
• In large networks, saddle points are far more 

common than local minima
• This is not true for small networks

• Saddle point: A point where
• The slope is zero
• The surface increases in some directions, but 

decreases in others
• Gradient descent algorithms often get “stuck” in 

saddle points

22 Neural NetworksDeep Learning
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Plateaux 

• A flat region of cost function
• When the gradient is always close to zero in a region, 

then the weights will not change.

• Saturated units can lead to plateau
• The derivative of this units in the saturation region is 

close to zero.

23 Neural NetworksDeep Learning
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Poor conditioning

• We need greeter gradients in the horizontal 
direction but we receive a larger gradient in the 
vertical direction

24 Neural NetworksDeep Learning
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Optimization issues

• Problems with gradient descent
• saddle points
• Platueaux  
• poor conditioning
• …
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Optimization issues

• Problems with gradient descent
• saddle points
• Platueaux  
• poor conditioning
• …

• Choices affecting optimization
• Learning rate (and learning rate decay)
• Batch size
• Weight Initialization
• (Input) Normalization
• Activation functions
• …

26 Neural NetworksDeep Learning
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Weight initialization

•  
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Xavier initialization

•  

28

[Glorot et al., 2010]
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Input normalization

• Normalize inputs to zero mean and unit variance 

• Batch normalization was introduced to normalize the 
activation of hidden units too 

• To alleviate poor conditioning or ravines in the optimization 
landscape

29 Neural NetworksDeep Learning
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Activation functions: sigmoid 

• Squashes numbers to range [0,1]

• Saturated neurons “kill” the gradients

30 Neural NetworksDeep Learning
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Activation functions

31

� Sigmoid and tanh are traditional activation functions
� Many new activation function since 2012

Deep Learning
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Generalization techniques  

• Regularization or weight-decay
• Hyper-parameter tuning
• Early stopping
• Model ensemble
• Weight-sharing

• e.g., CNNs
• Pre-training
• Data augmentation
• Dropout 
• Batch Normalization
• …
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Generalization

33
# epochs
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Regularization

•  
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Regularization can prevent overfitting

•  
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Hyper-parameter tuning: Example 
Number of Hidden Units

• Shows the expressive power the network
• Can specify the total numbers of weights that are the number of freedom 

degree

• Select among networks with different no. of hidden units by 
training these networks and then evaluating them on a validation 
set

• For large networks and large training set, it is inefficient.

36

training error

validation error

Number of 
hidden units

error

5 10 15 20 25 30 35 40
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Early stopping

• Stopping gradient descent early (instead of finding the 
best number of epochs after trying a wide range)

• However, it separates generalization and approximation 
issues

37
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• Parameter sharing
(Black arrows indicate the connections that use a particular parameter in two different models)

38

convolution

fully connected

[Goodfellow et al. 2016]

Convolutional layer vs. fully connected layer
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Convolutional filter

39

3x3 filter

7x7 input
Source: 
http://iamaaditya.github.io/2016/03/o
ne-by-one-convolution/ 

5x5 output

Gives the responses of that 
filter at every spatial position

Neural NetworksDeep Learning
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What is a convolution

• Scanning an image with a “filter”
• Note: a filter is really just a perceptron, with weights and a bias
• At each location, the “filter and the underlying map values are multiplied 

component wise, and these are added along with the bias

40

1 0 1
0 1 0

11 0

Input Map

Filter

0

bias
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Convolution

41 Neural NetworksDeep Learning
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Convolution

42 Neural NetworksDeep Learning
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Convolution

43

Local connections spatially but full along the entire depth of the input volume.
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Convolution

44 Neural NetworksDeep Learning
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Convolutional layer: neural view

45 Neural NetworksDeep Learning



Sharif University
of Technologytitle4646
Sharif University
of Technologytitle4646

Convolutional layer: neural view

46

An activation map is a 28x28 sheet of neuron 
outputs: 
1. Each is connected to a small region in the input 
2. All of them share parameters “5x5x3” 
     
“5x5 filter” => “5x5 receptive field for each neuron”

Neural NetworksDeep Learning
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Convolution: Feature maps or activation 
maps

47

consider a second, green filter
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Convolution: Feature maps or activation 
maps

• If we had 6 5x5 filters, we’ll get 6 separate activation maps:

• We stack these up to get a “new image” of size 28x28x6!
• depth of the output volume equals to the number of filters

48 Neural NetworksDeep Learning
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Convolutional layer: neural view

• If we had 6 “5x5 filters”, we’ll get 6 separate 
activation maps:

49

There will be 6 different neurons all looking at the same region in the input volume
constrain the neurons in each depth slice to use the same weights and bias
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Convolutional layer: neural view

50

set of neurons that are all looking at the 
same region of the input as a depth 
column

Neural NetworksDeep Learning
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ConvNet

• Preview: ConvNet is a sequence of Convolution Layers, 
interspersed with activation functions

51 Neural Networks
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How big of a region in the input does a neuron on the second conv-layer see?

[Goodfellow et al. 2016]

units in the deeper layers can be indirectly 
connected to all or most of the input image. 

Receptive Field

Neural NetworksDeep Learning
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How big of a region in the input does a neuron on the second conv-layer see? 
Two 3x3 filters together perform like one 5x5 filter (same receptive field)

Receptive Field

Neural NetworksDeep Learning
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Model ensemble

Neural NetworksDeep Learning

Ensemble models are a machine learning approach that combine multiple 
individual models (known as base estimators) in the prediction process. 
Ensemble models offer a solution to overcome the technical challenges of 
building a single estimator.
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Weight sharing

Neural NetworksDeep Learning

Weight sharing is an old-school technique for reducing the number of weights in a 
network that must be trained; it was leveraged by LeCunn-Net circa 1998. It is exactly 
what it sounds like: the reuse of weights on nodes that are close to one another in 
some way.
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Data augmentation

Neural NetworksDeep Learning

Data augmentation is the process of artificially generating new data from existing 
data, primarily to train new machine learning (ML) models.
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Dropout

Neural NetworksDeep Learning

Dropout and dilution are regularization techniques for reducing overfitting 
in artificial neural networks by preventing complex co-adaptations on 
training data. 
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Batch Normalization

Neural NetworksDeep Learning

Batch Normalization is used to reduce the problem of internal covariate shift in neural 
networks. It works by normalizing the data within each mini-batch. This means it 
calculates the mean and variance of data in a batch and then adjusts the values so that 
they have similar range.
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Summary

• Neural nets are universal approximators
• Backpropagation is a training algorithm for neural 
nets

• Training issues must be considered 
• Optimization and generalization issues 

• Convolutional layers as an example of inductive bias 
that improves generalization are introduced.
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