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* 2006 “Deep learning” name was selected

* ability to train deeper neural networks than had been possible before
* Although began by using unsupervisedfrlegresentation learning, later success
a

obtained usually using large datasets of labeled samples
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Deep Learning

* Learning a computational models consists of multiple
processing layers
* learn representations of data with multiple levels of abstraction.

* Dramatically improved the state-of-the-art in many speech,
vision and NLP tasks (and also in many other domains)
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MLP with single hidden layer

s Two-layer MLP (Number of layers of adaptive weights is counted)
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Machine Learning Methods

* Conventional machine learning methods:

* try to learn the mapping from the input features to the
output by samples

* However, they need appropriately designed
hand-designed features

Hand-designed
feature extraction

Input Classifier —  Output

Learned using
training samples

Sharif University
of Technology

Deep Learning




Example

® X,:intensity

* X,:symmetry

[Abu Mostafa, 2012]
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Representation of Data

* Performance of traditional learning methods depends heavily
on the representation of the data.

* Most efforts were on designing proper features

* However, designing hand-crafted features for inputs like
image, videos, time series, and sequences is not trivial at all.

* |t is difficult to know which features should be extracted.

* Sometimes, it needs long time for a community of experts to find (an
incomplete and over-specified) set of these features.
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Representation Learning

* Using learning to discover both:
* the representation of data from input features

* and the mapping from representation to output

Input

Trainable feature
extractor

Trainable classifier

—  Output

\

End-to-end
learning
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Deep networks

* Deeper networks (with multiple hidden layers) can work
better than a single-hidden-layer networks is an empirical
observation

* despite the fact that their representational power is equal.

* In practice usually 3-layer neural networks will outperform
2-layer nets, but going even deeper may not help much
more.

* This is in stark contrast to Convolutional Networks
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Deep Learning Approach

Output

?

Output

Output

Mapping from

features
Additional
Mapping from Mapping from layers of more
Output
features features abstract
features
Hand- Hand- Simpl
- ; imple
designed designed Features .
. features
program features
Input Input Input Input

Deep Learning

Sharif University

of Technology



Deep Learning Approach

* Deep breaks the desired complicated mapping into a series of
nested simple mappings
* each mapping described by a layer of the model.
* each layer extracts features from output of previous layer

* shows impressive performance on many Artificial Intelligence

tasks
Trainable feature Trainable feature
Input extractor — ... — extractor Trainable classifier ——  Output
(layer 1) (layer n)
Trainable feature
extractor Sharif University
Deep Learning of Technology




Deep Representations:

The Power of Compositionality

* Compositionality is useful to describe the world efficiently
* Learned function seen as a composition of simpler operations

* Hierarchy of features, concepts, leading to more abstract factors
enabling better generalization

* each concept defined in relation to simpler concepts
* more abstract representations computed in terms of less abstract ones.
* Again, theory shows this can be exponentially advantageous

* Deep learning has great power and flexibility by learning to
represent the world as a nested hierarchy of concepts

This slide has been adopted from Yoshua Bengio’s slides
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Deep learning

* Use networks with many layers

* A single hidden layer with enough units can approximate any
target network
* More layers more closely mimics human learning

* We may need far less number of nodes when we use deep
networks

* A hierarchy of internal representations for the input.
* The first layer constructs a low-level representation;

* More complex representations in terms of simpler representation
of the previous layer
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Boolean functions

* Input: N Boolean variable
* How many neurons in a one hidden layer MLP is required?

* More compact representation of a Boolean function
* “Karnaugh Map”

* representing the truth table as a grid

* Grouping adjacent boxes to reduce the complexity of the Disjunctive
Normal Form (DNF) formula
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Worst case

« Which truth tables cannot be reduced further simply?

* Largest width needed for a single-layer Boolean network on
N inputs

* Worst case:

* Example: Parity function

2N—1

w70 700 01 11 10
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11

10
XPYDZDOW
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Using deep network: Parity function on N inputs

« Simple MLP with one hidden layer:

2N=1 Hidden units

(N + 2)2N~1 Weights and biases

=X DX, D DXy

3(N — 1) Hidden nodes

9(N — 1) Weights and biases
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A better architecture

* Only requires 21ogN layers
*f = ((X1 D X;) D (X; D X4)) D ((X4 D Xs)

D (Xs @ X7)) )
)‘» “"'"'.\
o v
S JONO
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Boolean function: Wide vs. deep network

* MLP with a single hidden layer is a universal Boolean
function

* However, a single-layer network might need an exponential
number of hidden units w.r.t. the number of inputs

* Deeper networks may require far fewer neurons than the
single hidden layer network

* Linear w.r.t. the number of inputs when that is deep enough
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Why does deep learning become popular?

*Large datasets

* Availability of the computational resources to run
much larger models

* New techniques to address the training issues
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Training issues

* The backpropagation algorithm is an efficient way of
computing the derivative of the cost function w.r.t.
each of the weights

* However, many issues must be considered to have
successful training:
* Optimization issues
* Generalization issues
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Optimization 1SSUes

* Problems with gradient descent
* saddle points
* Platueaux
* poor conditioning
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Saddle point

* Popular hypothesis:

* In large networks, saddle points are far more
common than local minima

* This is not true for small networks

* Saddle point: A point where
* The slope is zero

* The surface increases in some directions, but
decreases in others

* Gradient descent algorithms often get “stuck” in

saddle points
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Plateaux

* A flat region of cost function

* When the gradient is always close to zero in a region,
then the weights will not change.

* Saturated units can lead to plateau

* The derivative of this units in the saturation region is
close to zero.
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Poor conditioning

——

* We need greeter gradients in the horizontal
direction but we receive a larger gradient in the
vertical direction
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Optimization 1SSUes

* Problems with gradient descent
* saddle points
* Platueaux
* poor conditioning
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Optimization 1SSUes

* Problems with gradient descent
* saddle points
* Platueaux
* poor conditioning

* Choices affecting optimization
* Learning rate (and learning rate decay)
* Batch size
* Weight Initialization
* (Input) Normalization
* Activation functions
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Weight initialization

* |nitialize weights near zero

* Thus, network (with sigmoid activation function) initially
is near linear and can gradually get non-linear

* Small random numbers (e.g. w~N(0,0.01))

* Doesn’t work with deeper networks.
* After some layers all activations become (near) zero
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Xavier initialization

% To have similar variances for neurons outputs:

* neurons with larger number of inputs the incoming weights
aredscaled down to reach comparable variance for different
nodes

Z — Wlxl + . +Wrx'r

. Idnitialization: Gaussian with zero mean and 1/+/fan_in standard
eviation

e fan_in for fully connected layers = number of neurons in the
previous layer

. ;I'hu.s, scale down weights variances when there exist higher
an in

. Helgs to reduce exploding and vanishing gradient

pro lem [Glorot et al., 2010]
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Input normalization

* Normalize inputs to zero mean and unit variance

 Batch normalization was introduced to normalize the
activation of hidden units too

* To alleviate poor conditioning or ravines in the optimization
landscape
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Activation functions: sigmoid

* Squashes numbers to range [0, 1]

Sigmoid
* Saturated neurons “’kill” the gradients
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Activation functions

0 Sigmoid and tanh are traditional activation functions

0 Many new activation function since 2012
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Generalization techniques

* Regularization or weight-decay
* Hyper-parameter tuning
* Early stopping
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Generalization

cost

J»: Overfitting

J»: good generalization

] train

A
>

Sharif University
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Regularization

N
JW) = %Z LWW) + AR(W)
n=1

 R(W):is defined based on the norm of the weights vectors

2
* Example:R(W) =), Zi'j Wi[;]
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Regularization can prevent overfitting

®» Small W leads to linear regime of activation functions
like sigmoids

» A deep network with small W can also act as a near
linear function
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Hyper-parameter tuning: Example

Number of Hidden Units

* Shows the expressive power the network
* Can specify the total numbers of weights that are the number of freedom
degree

* Select among networks with different no. of hidden units by
training these networks and then evaluating them on a validation
set

* For large networks and large training set, it is inefficient.
error

validation error

o\;\\/ P

O

C O
C

o o lraining error

5 10 15 20 |25 |30 35 40 Numberof

hidden units
Deep Learning
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Early stopping

cost

Jo

N

] train
>

#epochs

radient descent early (instead of finding the
er of epochs after trying a wide range)

* However, it separates generalization and approximation
issues

e Stoppin
besil:alla1u§1§
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Convolutional layer vs. fully connected layer

* Parameter sharing

(Black arrows indicate the connections that use a particular parameter in two different models)

@ convolution

@ fully connected

[Goodfellow et al. 2016]
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Convolutional filter

7X7 input

Gives the responses of that
filter at every spatial position

5x35 output

3x3 filter

Source:
http://iamaaditya.github.i0/2016/03/0

ne-by-one-convolution/
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http://iamaaditya.github.io/2016/03/one-by-one-convolution/
http://iamaaditya.github.io/2016/03/one-by-one-convolution/

What is a convolution

1x1 1x0 1x1 0 0
OxOl 1x1 1x0 1 o 4
Oxl oxO 1x1 1 1
00 1 10
0110l
Convolved
Feature

* Scanning an image with a “filter”

* Note:a filter is really just a perceptron, with weights and a bias
* At each location, the “filter and the underlying map values are multiplied

component wise, and these are added along with the bias

Deep Learning

Sharif University
of Technology




Convolution

32x32x3 image -> preserve spatial structure

32 height 5x5x3 filter
/4
II Convolve the filter with the image
i.e. “slide over the image spatially,
computing dot products”

Sharif University
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Convolution

Filters always extend the full

s depth of the input volume

32x32x3 image /
/ 5x5x3 filter
32 ‘4
I' Convolve the filter with the image
I.e. “slide over the image spatially,

computing dot products”
A

Deep Learning
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Convolution

__— 32x32x3 image

/ 5x5x3 filter w
LR

™~ 1 number:

the result of taking a dot product between the

filter and a small 5x5x3 chunk of the image
32 (i.e. 5*5*3 = 75-dimensional dot product + bias)
wlz +b

Local connections spatially but full along the entire depth of the input volume.

w|
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Convolution

__— 32x32x3 image

5x5x3 filter
-

=\

convolve (slide) over all
spatial locations

N\

Wl

Deep Learning

activation map
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Convolutional layer: neural view

-

I

___— 32x32x3 image

/ 5x5x3 filter
e

\

It's just a neuron with local
connectivity...

1 number:

the result of taking a dot product between
the filter and this part of the image

(i.e. 5*5*3 = 75-dimensional dot product)
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Convolutional layer: neural view

32

3

An activation map is a 28x28 sheet of neuron
outputs:

|. Each is connected to a small region in the input
2. All of them share parameters “5x5x3”

“5%5 filter” =>“5x5 receptive field for each neuron”
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Convolution: Feature maps or activation

maps

__— 32x32x3 image

/ 5x5x3 filter
=
@>® convolve (slide) over all

spatial locations
s

Deep Learning

consider a second, green filter
activation maps

y
L

28
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Convolution: Feature maps or activation

maps

* If we had 6 5x5 filters, we’ll get 6 separate activation maps:
activation maps

s v

Convolution Layer

A A

3 6

28

* We stack these up to get a “new image” of size 28x28x6!
* depth of the output volume equals to the number of filters
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Convolutional layer: neural view

* If we had 6 “5x5 filters”, we'll get 6 separate
activation maps:

/ >
Convolution Layer
A A

3 6

activation maps

\

28

There will be 6 different neurons all looking at the same region in the input volume
constrain the neurons in each depth slice to use the same weights and bias

Sharif University
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Convolutional layer: neural view

32

28

“ 0000D

N

3 28

A

w|

set of neurons that are all looking at the
same region of the input as a depth
column

Deep Learning

E.g. with 5 filters,

CONV layer consists of
neurons arranged in a 3D grid
(28x28x5)

There will be 5 different
neurons all looking at the same
region in the input volume
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ConvNet

* Preview: ConvNet is a sequence of Convolution Layers,
interspersed with activation functions

4
A

g

32

CONV,

RelLU
€g.6
5x5x3
filters

A

.

o |

28

CONV,

RelLU
e.g. 10
5x5x6
filters

A

.

Neurail Networks

24

CONV,

RelLU
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Receptive Field

How big of a region in the input does a neuron on the second conv-layer see?

units in the deeper layers can be indirectly
connected to all or most of the input image.

[Goodfellow et al. 2016]
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Receptive Field

How big of a region in the input does a neuron on the second conv-layer see?

-y
-y
-
~ = —_—a
~~~~ ~~~~
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-
”’
Input First Conv Second Conv
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Model ensemble

Ensemble models are a machine learning approach that combine multiple
individual models (known as base estimators) in the prediction process.
Ensemble models offer a solution to overcome the technical challenges of

building a single estimator.

Bootstrapped
samples

+
A ——» Learnerl
+

®

Base
learners

Training
data

&
A

4

—» Llearner2

A x — > Learner3
%

Individual
predictions

—p Yes

—p» Yes Yes

:

Ensemble
prediction

— No
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Weight sharing

Weight sharing is an old-school technique for reducing the number of weights in a
network that must be trained; it was leveraged by LeCunn-Net circa 1998. It is exactly

what it sounds like: the reuse of weights on nodes that are close to one another in
some way.

max pooling
layer bands P P>

pooling size

convolution h(l) h(1) h(1) h(?-) h(2) h(Z)
layer sections Ml = M
W(l) W(z)

inputbands v, [ Vo [ V3 [Va|Vs | Ve | V7| Vs ]| Vo

L J & J
i 4 N
band shift filter size
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Data augmentation

Data augmentation is the process of artificially generating new data from existing
data, primarily to train new machine learning (ML) models.

Horizontal Vertically +45 Rotation -45 Rotation Blur

Original Image

Brighter Noise added Darker Grayscale Crop

g [ -
\" _— X -
v
-

Augmented Images
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training data.

Dropout and dilution are regularization techniques for reducing overfitting

in artificial neural networks by preventing complex co-adaptations on
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Batch Normalization

Batch Normalization is used to reduce the problem of internal covariate shift in neural
networks. It works by normalizing the data within each mini-batch. This means it
calculates the mean and variance of data in a batch and then adjusts the values so that
they have similar range.

. \"\\
/ Batch Norm R
Features ﬂean and Std Dev \ @)rmalize \ Scale and Shift \ Features

G Features : - Features = I

M Samples

\ |

-

M Samples
Y
=
all
A4
\

< oG o, / \_ A; y € J BN,

>
™
-
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Summary

* Neural nets are universal approximators

* Backpropagation is a training algorithm for neural
nets

* Training issues must be considered
* Optimization and generalization issues

* Convolutional layers as an example of inductive bias
that improves generalization are introduced.
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